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ABSTRACT

The recent dryness in California was unprecedented in the instrumental record. This article employs spatially

explicit precipitation reconstructions forCalifornia in combinationwith instrumental data to provide perspective on

this event since 1571. The period 2012–15 stands out as particularly extreme in the southern Central Valley and

south coast regions. which likely experienced unprecedented precipitation deficits over this time, apart from

considerations of increasing temperatures and drought metrics that combine temperature and moisture in-

formation. Some areas lost more than two years’ average moisture delivery during these four years, and full re-

covery to long-term average moisture delivery could typically take up to several decades in the hardest-hit areas.

These results highlight the value of the additional centuries of information provided by the paleo record, which

indicates the shorter instrumental record may underestimate the statewide recovery time by over 30%. The ex-

treme El Niño that occurred in 2015/16 ameliorated recovery in much of the northern half of the state, and since

1571 very-strong-to-extreme El Niños during the first year after a 2012–15-type event reduce statewide recovery

times by approximately half. The southern part of California did not experience the high precipitation anticipated,

and the multicentury analysis suggests the north-wet–south-dry pattern for such an El Niño was a low-likelihood

anomaly. Recent wetness in California motivated evaluation of recovery times when the first two years are rela-

tively wet, suggesting the state is benefiting from a one-in-five (or lower) likelihood situation: the likelihood of full

recovery within two years is ;1% in the instrumental data and even lower in the reconstruction data.

1. Introduction

The recent record-breaking dryness in California,

considered here for water years 2012–2015, is un-

precedented in the instrumental record going back to

1896 (NCEI 2016). [A water year (WY) is defined as

running from October of yeart21 through the follow-

ing September of yeart, and all years mentioned

hereinafter (other than reference citations) are WY

periods.] The proximate dynamical causes and impact

of this lack of moisture delivery have been much

evaluated (e.g., AghaKouchak et al. 2014; Wang et al.

2014; Belmecheri et al. 2015; Diaz and Wahl 2015;

Diffenbaugh et al. 2015; Seager et al. 2015; Prein et al.

2016). It has also been analyzed regarding the extent to

which associated drought conditions—including tem-

perature impacts that enhance evaporative demand

Supplemental information related to this paper is avail-

able at the Journals Online website: http://dx.doi.org/10.1175/

JCLI-D-16-0423.s1.

Corresponding author: Eugene. R. Wahl, eugene.r.wahl@noaa.

gov

1 AUGUST 2017 WAHL ET AL . 6053

DOI: 10.1175/JCLI-D-16-0423.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/23/22 07:13 PM UTC

http://dx.doi.org/10.1175/JCLI-D-16-0423.s1
http://dx.doi.org/10.1175/JCLI-D-16-0423.s1
mailto:eugene.r.wahl@noaa.gov
mailto:eugene.r.wahl@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


and potential evapotranspiration (Cook et al. 2016)—are

unprecedented relative to the past 1–2 millennia (Adams

et al. 2015; Robeson 2015; Griffin and Anchukaitis 2014)

and can be attributed to anthropogenic influence on re-

gional temperatures and the co-occurrence of dry and

warm years (Williams et al. 2015; Diffenbaugh et al. 2015;

cf. Cook et al. 2016). In some parts of the state, more than

two full years’ moisture delivery was lost during the past

four years (Fig. 1).

Here, we evaluate this dry period from a long-term

spatial paleoclimate perspective going back to 1571,

coupled with instrumental information through 2015.

We utilize high-resolution, spatially explicit (0.58 3
0.58) paleoclimate reconstructions reported and eval-

uated earlier at the level of the California and western

Nevada (CANV) areal average (Diaz and Wahl 2015)

to examine the past four years relative to this ex-

tended period for the state’s seven climate divisions

(Fig. S1 in the supplemental material). From a tech-

nical perspective, we also evaluate the extent to which

the division-level reconstructions are characterized

by nonwhiteness–memory, which was highlighted by

Bunde et al. (2013; cf. Zhang et al. 2015) as a poten-

tially significant problem with tree-ring-derived pre-

cipitation reconstructions, and which has not been

evaluated in related reconstructions (Wise 2016).

[Here, we use terms derived from ‘‘whiteness’’ to re-

fer to these characteristics.] Both the reconstructions

and instrumental data exhibit whiteness according to

this evaluation (supplemental material), and we use

this result to motivate evaluating the time for each

grid cell to recover back to long-term average mois-

ture delivery from the cumulative 2012–15 pre-

cipitation loss. We additionally evaluate this recovery

time when the first year in the recovery period is a

very-strong-to-extreme El Niño (EN) event, as was

the case for 2016.

2. Methods

The truncated EOF–principal components spatial

regression (TEOF-PCSR) methodology used to assess

preinstrumental climate in western North America was

described and evaluated byWahl and Smerdon (2012; cf.

supplemental material therein), and details of its use to

reconstruct CANV precipitation are described in Diaz

and Wahl (2015). In TEOF-PCSR, least squares re-

gression is applied to the principal component time se-

ries (PCs) of a truncated empirical orthogonal function

(TOEF) representation of the instrumental climate field

and a collection of leading PCs of the predictor data. In

this procedure, the n number of reconstructed in-

strumental PCs Ûn generated by the regression are

substituted back into the singular value decomposi-

tion of the instrumental field, Precipitationfield–fitted 5
ÛnDnV

0
n, to derive the reconstructed field (where the

subscript n denotes the rank-reduced matrices). In this

formula, Ûn is the matrix of reconstructed instrumental

PCs, Dn is the diagonal matrix of singular values, and V0
n

is the transposed matrix of EOFs. The reconstruction

period is 1571–1977, with a calibration period of 1916–77

and an independent validation period of 1896–1915

(Table 1). The calibration period was set to be as long as

possible, given the start year of the instrumental data

(1896) and the latest year common to the predictor data

(1977), while retaining at least two decades worth of

data for independent validation. Along with the high

validation performance for reconstruction of the CANV

spatial mean reported in Diaz andWahl (2015), we note

the strong spatial validation performance of the re-

construction for California by the standard reduction of

error (RE) and coefficient of efficiency (CE) metrics

(Figs. S2–S4 and associated captions in the supplemental

material).

For the purposes of this paper, the variance of each

grid cell’s reconstruction was adjusted to correspond to

that of the instrumental data over the calibration period.

This adjustment was done to ensure that the amplitude

of precipitation variability is properly captured by the

reconstructions in light of our foci to: 1) compare the

depth of the recent deficits with other dry extremes over

FIG. 1. Cumulative precipitation loss (2) or gain (1), expressed

in terms of one year’s average, for water years 2012–15 at the 0.58 3
0.58 scale of the reported reconstructions. Data are regridded from

the 5 km 3 5 km precipitation product produced by the National

Centers for Environmental Information (Vose et al. 2014). The

average for California as a whole is a deficit equivalent to 1.2 yr of

average precipitation.
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the past ;450 yr (section 3a and Figs. 2–4); and 2) to

evaluate how long it will take to fully recover back to

long-term average moisture delivery (section 3b and

Fig. 5). We note that this kind of adjustment, by con-

struction, leads to a loss of optimality relative to the

squared error-minimizing character of unadjusted linear

regression; however, the loss is relatively small in this

case (cf. Figs. S2 and S4) and concentrated in the eastern

interior desert and far northwest coastal regions

(Fig. S4). The autocorrelation function and persistence

length analyses (supplemental material) are not affected

by the adjustment.

An important feature of the reconstructions we re-

port and utilize is the large (n 5 1000) probabilistic

reconstruction ensemble associated with the expected

value (EV) reconstructions, which has been newly de-

veloped for this paper and is the first of its kind for

western North America spatial precipitation re-

constructions. The ensemble was generated at the

gridcell scale, and the probability ranges and values

reported in sections 3a (Figs. 2–4) and 3b (Fig. 5) are

developed from it, centered on the corresponding EV

reconstructions. This ensemble method is motivated by

the U.S. National Research Council (NRC) report of

2006, recommending that the high-resolution paleo-

climate reconstruction community provide more sys-

tematic estimation of reconstruction uncertainty (NRC

2006). Our implementation utilizes a Monte Carlo

generalization of the ‘‘bootstrapping the residuals’’

technique (Dixon 2006), in which the residuals are

statistically modeled using the Hosking simulation al-

gorithm to emulate their autoregressive characteristics

(Hosking 1984; cf. https://www.rdocumentation.org/

packages/waveslim/versions/1.7.5/topics/hosking.sim

concerning implementation ofHosking’smethod in theR

language), and then independent random draws are de-

rived from the modeled distribution to drive generation

of the ensemble members (cf. Li et al. 2007; D. Nychka

2010, personal communication). This process produces

an ensemble of equally likely precipitation recon-

structions conditional on the predictor data, rather

than confidence intervals estimated from one EV re-

construction realization (Li et al. 2007). Details of the

ensemble generation methodology in the spatially ex-

plicit context are provided in Wahl and Smerdon (2012;

cf. Wahl et al. 2014).

The instrumental data were regridded to 0.58 scale by

area-weighted averages from the 5-kmgriddedprecipitation

dataset for the continental United States (CONUS) de-

veloped by NOAA’s National Centers for Environmental

Information, Center for Weather and Climate (NCEI-

CWC) (Vose et al. 2014). There is necessarily a loss of

spatial heterogeneity below the 0.58-scale relative to

the 5-km-scale grid; however, this does not affect the

interannual variability of the data at the regridded scale.

The whiteness of the precipitation data [supple-

mental material; cf. Margulis et al. (2016), who find

the same whiteness characteristic for Sierra Nevada

snowpack data] allows us to examine recovery times

from a specified initial precipitation deficit without

conditioning the examination on the characteristics

of the immediately preceding years. That is, the

analysis does not need to depend (in this case) on

examining conditions after a run of four particularly

dry years but rather can evaluate recovery time

from a specified deficit for all possible starting years

since the data lack temporal dependence. We define

length of recovery to be the number of years it takes

for the cumulative precipitation in a grid cell to equal

or exceed the cumulative climatological average

precipitation for that cell over the same number of

years, when the cumulative total for the cell is ini-

tialized at the start of the recovery period by the

2012–15 loss (Fig. 1). Cells with no cumulative loss

over 2012–15 were assigned recovery times of zero by

definition; there are three such cells along the Colo-

rado River in the southeastern portion of the state

(Fig. 1). All other cells started with aminimum recovery

time of one year. We evaluated recovery periods up to

50yr in length so that the longest recovery time noted in

Fig. 5 is 50 or more years. We thus needed to stop the

reconstruction-based analysis at 1928, going forward from

TABLE 1. Time periods used in reconstruction and analyses

(water years).

Reconstruction period (length of

predictor data)

1571–1977

Instrumental data period 1896–2015

Calibration period 1916–77

Validation period 1896–1915

Recovery period start years (forward),

reconstruction

1571–1928

Recovery period start years (reverse),

reconstruction

1977–29

Recovery period start years (forward),

instrumental

1896–1966

Recovery period start years (reverse),

instrumental

2015–1967

Very-strong-to-extreme El Niño
years (below)

1618, 1718, 1791, 1845, 1878, 1903,

1906, 1941, 1942, 1973, 1983, 1998a,b

a The year 2016 is not included so its characteristics can be in-

dependently evaluated in relation to the available knowledge

from prior events.
b The strong reduction of frequency prior to the instrumental pe-

riod (1878 and later) is attributable to uncertainty in timing and

spatial expression of EN events. See section 2 for details.
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the first reconstructed year, 1571. Similarly, we needed to

stop the instrumental-based analysis at 1966, going forward

from the firstWY in the period of record, 1896. Because of

the whiteness exhibited by the data, the recovery length

analysis can also logically be run in reverse, starting at

nearer years and proceeding backward in time. We

exploited this capability to fill in the starting years of

1977–29 for the reconstruction-based data and to fill in

the starting years of 2015–1967 for the instrumental-

based data (Table 1).

For the recovery length evaluation, the means of the

gridcell reconstructions over their full period (1571–

1977) were set equal to their corresponding instrumen-

tal period (1896–2015) means. Analyses we performed

showed that the recovery times are related to the

baseline period used to determine the climatological

precipitation against which recovery is gauged. If the

baseline period’s mean is above the full period mean

and the data evaluated are not adjusted to the baseline

period mean, the recovery times take longer than

FIG. 2.Water year precipitation for northern California climate divisions 1–3 (see Fig. S1

for map and names of the divisions and Table S1 in the supplemental material for definition

of reconstruction grid cells assigned to each division). Dark gray lines show annual EV

reconstructions; light gray shading shows associated 90% probability ranges from re-

construction ensemble; thin salmon lines show corresponding instrumental data; heavy

black and salmon lines show ; decadal locally weighted regression smoothing (LOESS);

the horizontal solid black lines show 1896–2015 instrumental averages; red lines show

2012–15 means; purple lines show lowest EV 4-yr running means (darker purple) and

corresponding 90% probability ranges (lighter purple); dotted black lines show lowest

single-year EV reconstruction (years are indicated on each plot).
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when the baseline period mean equals the full period

mean; similarly, if the baseline period mean is below

the full period mean and the evaluated data are not

adjusted to the baseline period mean, the recovery

times are shorter than when the baseline period mean

equals the full period mean. Thus, an analytical de-

cision needs to be made in terms of how recovery

length is defined. The entire instrumental period

represents the most directly measured information

available against which to gauge recovery from the

FIG. 4. As in Fig. 2, but for southeastern California desert climate division 7.

FIG. 3. As in Fig. 2, but for central- and south-coastal California climate divisions 4–6.
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2012–15 losses, and so we chose this time period as a

reasonable baseline for the recovery period evalua-

tion. In turn, we adjusted the means of the EV and

ensemble member reconstructions to this norm to

ensure full compatibility with the recovery times es-

timated from the instrumental data per se.

The specification of EN events for recovery length

analysis in which the first year is a very-strong-to-

extreme EN is taken from the extended multivariate

EN–Southern Oscillation (ENSO) index (MEI;

Wolter and Timlin 2011) for the period after 1876

(https://www.esrl.noaa.gov/psd/enso/mei.ext/) and a

combination of preinstrumental information from

Gergis and Fowler (2009, hereafter GF09) and

Garcia-Herrera et al. (2008, hereafter G08) prior to

1877. After 1876, a very-strong-to-extreme event is

identified by a MEI value $ 2; prior to 1877 such

events are identified as very strong or extreme by

GF09. GF09 is a meta-analysis that employs an ob-

jective evaluation methodology to allow combination

of quantitative and documentary paleoclimatological

information regarding the coupled ocean–atmosphere

ENSO system. It includes both event timing along

with estimation of relative event strength. G08 is an

independent analysis that utilizes historical in-

formation from the Spanish archives to identify EN

years along the coast of Peru. We use this additional

information to help eliminate uncertainty in the GF09

timing chronology relative to the manifestation of

ENs in the eastern Pacific that arises from their in-

clusion of event information across the Pacific basin:

information that can include the manifestation of a

strong EN in other parts of this region that is not well-

represented in the eastern Pacific. The timing of

events can be similarly affected by the location in the

equatorial Pacific where pre-instrumental events are

noted and whether their manifestation is primarily

atmospheric or oceanic, all of which is taken into ac-

count by GF09. We thus use the G08 chronology of

ENs to screen the very strong and extreme events

listed by GF09 and employ only those events that

agree on their timing in both listings. Together with

theMEI events after 1876, this methodology identifies

12 events for analysis (Table 1).

3. Results

a. Divisional reconstructions

The reconstructions for the seven California climate

divisions (cf. Fig. S1) are shown in Figs. 2–4. The 90%

reconstruction probability ranges for the annual values

(light gray shading in Figs. 2–4) generally encompass the

instrumental time series, indicative of the overall spatial

skill mentioned in section 2 (cf. Figs. S2–S4). The North

Coast drainage (division 1) exhibits the largest number

of departures in this regard, as anticipated from

Fig. S4, whereas the central coast, south coast, and San

Joaquin drainages (divisions 4–6) exhibit nearly zero

departures of this kind, also as anticipated (we note the

unanticipated few departures in the southeast desert

basin, division 7). In general, the divisional results are

consistent with the statewide evaluation reported in

Diaz and Wahl (2015) and the evaluation for the

combined central coast, south coast, and San Joaquin

drainages along with the southeast desert basin (di-

visions 4–7) reported by Griffin and Anchukaitis

(2014): that the recent precipitation deficits, while

clearly extreme, are not unprecedented in the annually

resolved paleo record. It is the combination of pre-

cipitation deficits with temperature increases gauged

by metrics such as the Palmer drought severity index

(PDSI) that suggests uniqueness over the past millen-

nium and longer for the 2012–15 event (Robeson 2015;

Williams et al. 2015; Griffin and Anchukaitis 2014).

Adams et al. (2015) reach the same conclusion for the

past 2000 years from streamflow reconstructions in the

southwestern Sierra Nevada driven by PDSI re-

constructions (Cook et al. 2007). All the divisions

except the San Joaquin and south coast drainages

(divisions 5 and 6) show similar characteristics here (i.e.,

the red lines are above or near the top of the re-

construction 90% probability ranges outlined by the

corresponding lighter purple lines in Figs. 2–4).

By contrast, the division-specific results we report

allow identification that the precipitation deficits for

the San Joaquin and south coast drainages (divisions

5 and 6) are likely unprecedented since the later six-

teenth century. These are the regions where the 2012–15

losses were the largest (Fig. 1); in the worst-hit areas

representing over two years of average precipitation,

and in them no sequential 4-yr period is reconstructed in

the EV to have experienced the same loss as 2012–15

(i.e., the heavier purple lines for these divisions are

above the corresponding red lines in Fig. 3). The 90%

ranges for such extreme losses in these two divisions

indicate that there could have been 4-yr sequences prior

to the instrumental period that were drier than 2012–15

(i.e., below the corresponding red lines in Fig. 3), but

there is a larger probability that 2012–15 was even more

extreme compared to the last ;450 yr than indicated by

the EV results (i.e., the majority of the driest 4-yr recon-

struction sequences are above the corresponding red lines

in Fig. 3). From a social geography context, we note that

the San Joaquin and south coast drainages encompass the

agriculturally rich southern Central Valley and the
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southern coastal region that includes the greater Los

Angeles and San Diego metropolitan areas, which

have the third highest regional population (Mexico

Consejo Nacional de Población 2016; U.S. Census

Bureau 2015) and the second largest gross regional

product (U.S. Department of Commerce, Bureau of

Economic Analysis, 2016) in North America. In terms

of the extreme dry departure of its decadal-smoothed

values (heavy black and salmon lines in Fig. 3), the San

Joaquin drainage was the hardest hit in terms of pre-

cipitation delivery.

Squared correlations between the divisions’ EV re-

constructions are presented in Table 2, based on the value

of the reconstructions in standardized anomaly units. These

highlight the known transition of relatively wetter to drier

conditions that occurs from north to south in California (cf.

Dettinger et al. 1998), which is particularly notable for the

southernmost divisions 6 and 7 versus the northernmost

divisions 1–3. The length of the reconstruction period,

407yr, allows large sample sizes for comparisons of pro-

gressively more extreme conditions, and Table 2 indicates

that the greater the extreme (either dry or wet), the more

the divisions experience similar climatic conditions. How-

ever, even in themost extreme situation evaluated (absolute

anomaly value$ 1.0 for at least one division), the southern

desert division 7 shares less than half of its variation with

divisions 1 and 3 and just above half with division 2. This

difference is particularly notable during the 2012–15 dry

period for the Colorado Desert (farthest southeast portion

of the state); the only three grid cells in California without a

cumulative loss during the four-year period are located in

this region (Fig. 1). Table S2 in the supplemental material

reports comparable information derived using only the

instrumental data. These results exhibit the same

general spatial characteristics as the reconstructions

(we note that the squared correlation values are gen-

erally lower for the shorter time period evaluated).

b. Evaluation of recovery times from recent
precipitation deficits

As noted in section 2, the whiteness we find in the

reconstructions and instrumental data allows us to

FIG. 5. Precipitation losses for 2012–15 water years and estimated recovery times (yr) across California 0.58 grid cells: (a) cumulative

precipitation loss (2) or gain (1), relative to one year’s average, for water years 2012–15 as indicated by instrumental data (INST), as in

Fig. 1 (replicated here for ease of comparison); (b) median recovery time for single-year 2014 loss, as indicated by INST; (c) median

recovery time for cumulative 2012–15 loss, as indicated by INST; (d) 20th-percentile recovery time for cumulative 2012–15 loss,

as indicated by INST; (e) median recovery time for cumulative 2012–15 loss, as indicated by reconstruction data (RECON); and

(f) 20th-percentile recovery time for cumulative 2012–15 loss, as indicated by RECON. Numbers in parentheses for (e) and (f) represent

p 5 0.05 probabilities from the reconstruction ensemble that the statewide median recovery time noted will be this value or less.
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evaluate recovery times from a specified initial pre-

cipitation deficit without conditioning the evaluation

on the characteristics of the immediately preceding

years. The spatial results of this evaluation are shown in

Figs. 5b–f, along with the characteristics of the 2012–15

deficits at the gridcell scale in Fig. 5a, which replicates

Fig. 1 for ease of comparison. The most notable feature

is the length of the recovery times, discussed further in

section 4. For the instrumental data, the statewide

median recovery time across the grid cells is nearly

three decades (29.5 yr; Fig. 5c), and nearly 10 yr longer

for the reconstruction EV (39.0 yr; Fig. 5e). At the

20th-percentile level (i.e., the chance of a given re-

covery time or less occurring is 0.2), the corresponding

statewide time periods are still at the decadal-plus

scale: 8.8 yr for the instrumental data (Fig. 5d) and

14.0 yr for the reconstruction EV (Fig. 5f). We note that

the median and 20th-percentile statewide recovery

times determined from the instrumental data, while

clearly lower than those determined from the re-

construction EV and thus in the lower tail of the cor-

responding reconstruction ensemble distributions, are

still within the 90% probability ranges estimated from

the ensemble (Figs. 5e,f). For comparison, the state-

wide median recovery time for 2014 alone, the single

driest year during 2012–15, is 8.0 yr in the instrumental

data (Fig. 5b), highlighting the longer-term moisture

delivery impact of just one severely dry year. The

statewide median recovery time when the first year

of the recovery period is screened by very-strong-

to-extreme EN conditions is 18.0 yr, indicating a

substantial reduction of 54% relative to the full re-

construction statewide median of 39.0 yr (Fig. 5e), or

39% relative to the full instrumental statewide median

of 29.5 yr (Fig. 5c). When the analysis is restricted to

the reconstruction period only (ending in 1977), the 10

included events show similar results with a statewide

median of 21 yr, for a 46% and 29% reduction relative

to the full-reconstruction and full-instrumental state-

wide medians, respectively.

In light of the high precipitation amounts that have

occurred to date in California during the current WY

(1 October 2016–8 March 2017), we also estimated re-

covery times and their associated likelihoods under the

simple assumption that the first two years of recovery

are characterized by generally wet years. We used 1969

and 2005 as examples of such years in recent decades,

which exhibited different relative strengths in terms of

north–south representation (Figs. 2–4). Each year was

used separately to represent the precipitation for the

first two recovery years. The results of this analysis in-

dicate much shorter recovery times, with statewide

median values of 7.0 and 8.0 yr for the 1969 and 2005

cases, respectively, similar to the 20th-percentile-level

case reported in Fig. 5d.

4. Discussion

The result that the 2012–15 cumulative precipitation

deficits in the San Joaquin and south coast drainages are

likely unprecedented since at least the later sixteenth

century, separate from considerations of increasing

temperatures and related drought metrics, is climato-

logically important. This result suggests that California

precipitation delivery by itself is sufficient under current

TABLE 2. Squared correlations between California climate

divisions (div) for water year (October–September) precipitation

reconstructions, 1571–1977 (data are represented as standardized

anomalies).

All years.

Div 1 Div 2 Div 3 Div 4 Div 5 Div 6 Div 7

Div 1 1.00

Div 2 0.98 1.00 Count %

Div 3 0.96 0.98 1.00 407 100.0

Div 4 0.81 0.89 0.83 1.00

Div 5 0.84 0.91 0.87 0.99 1.00

Div 6 0.49 0.60 0.54 0.88 0.85 1.00

Div 7 0.30 0.40 0.34 0.72 0.68 0.96 1.00

Years when at least one division has absolute anomaly value$ 0.5.

Div 1 Div 2 Div 3 Div 4 Div 5 Div 6 Div 7

Div 1 1.00

Div 2 0.98 1.00 Count %

Div 3 0.97 0.98 1.00 339 83.3

Div 4 0.82 0.90 0.84 1.00

Div 5 0.85 0.92 0.88 0.99 1.00

Div 6 0.52 0.62 0.56 0.89 0.86 1.00

Div 7 0.32 0.42 0.36 0.73 0.69 0.96 1.00

Years when at least one division has absolute anomaly value$ 0.75.

Div 1 Div 2 Div 3 Div 4 Div 5 Div 6 Div 7

Div 1 1.00

Div 2 0.99 1.00 Count %

Div 3 0.97 0.99 1.00 266 65.4

Div 4 0.85 0.91 0.86 1.00

Div 5 0.88 0.94 0.90 0.99 1.00

Div 6 0.57 0.66 0.61 0.90 0.87 1.00

Div 7 0.37 0.47 0.41 0.75 0.71 0.96 1.00

Years when at least one division has absolute anomaly value$ 1.0.

Div 1 Div 2 Div 3 Div 4 Div 5 Div 6 Div 7

Div 1 1.00

Div 2 0.99 1.00 Count %

Div 3 0.98 0.99 1.00 187 45.9

Div 4 0.87 0.92 0.88 1.00

Div 5 0.90 0.95 0.91 0.99 1.00

Div 6 0.62 0.70 0.65 0.91 0.88 1.00

Div 7 0.43 0.52 0.45 0.77 0.73 0.96 1.00
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climate conditions to produce themultiple-year extreme

dry conditions recently experienced, at least in these

regions, without accounting for the anthropogenic

temperature forcing that is partly responsible for am-

plification of the extreme drought conditions (Williams

et al. 2015). This previously unrevealed longer-term

perspective underscores the value of paleo-

precipitation reconstructions at relatively high spatial

resolution. Considering the additional drying impacts of

increasing temperatures as anthropogenic warming

continues (Cook et al. 2016), the enhanced potential for

combinations of severe precipitation deficits with high

temperature-driven evaporation and potential evapo-

transpiration indicates the possibility of ‘‘mega-

droughts’’ in the North American Southwest, including

California, that will exceed the worst such episodes

evidenced in the region during medieval times (Cook

et al. 2007; Stine 1994) by the second half of the twenty-

first century (Cook et al. 2016). The Sierra Nevada

snowpack reconstruction of Belmecheri et al. (2015) and

related instrumental-period reanalysis of Margulis et al.

(2016) suggest that such a signal may already be present

in the unprecedented low snowpack that occurred in the

Sierra Nevada in early 2015–the intensity of the snow-

pack loss was greatest at lower montane elevations

(,2130m), where the impact of higher winter temper-

atures on moisture retention would first be expected to

be detectable.

The recovery time results are surprising in two ways.

First, and most obviously, the estimated recovery times

from the cumulative 2012–15 precipitation deficits are

long, both for the instrumental and reconstruction data.

To a first order, the longest recovery periods follow the

intensity of the cumulative deficits, especially in the

midportion of the state (Fig. 5). However, this pattern

does not hold as generally in the southeastern deserts

and adjacent southern coastal region, particularly in the

instrumental data (Figs. 5c,d). In these portions of the

state, the recovery times estimated from the in-

strumental data are relatively shorter in relation to the

original 4-yr deficits, although with gridcell medians still

on the order of two-plus decades in the heavily popu-

lated Los Angeles area (Fig. 5c). We note that surface

agricultural amelioration, for example, could occur with

even one year of high precipitation and more generally

is strongly buffered via storage, transport, and irrigation.

The long recovery periods we find are best considered as

indicative of full hydrological recovery from the cumu-

lative deficits over 2012–15, including groundwater re-

charge as it would be represented in the absence of

California’s extensive storage, distribution, and usage

systems. As mentioned above, the additional impacts of

increasing temperatures on moisture balances into the

later twenty-first century (Cook et al. 2016) suggest the

possibility that the long recovery times our results indicate

may actually be conservative relative to what future dry

conditions will entail. While the pattern of recovery for

2014 alone (Fig. 5b) continues generally to follow the in-

tensity of the cumulative 4-yr deficits, there is less overall

spatial variability associated with this single-year loss.

Second, the differences between the estimated re-

covery times from the instrumental and reconstruction

data (cf. Figs. 5c,d with Figs. 5e,f, respectively) are po-

tentially surprising in that they are not necessarily an-

ticipated from the autocorrelation and persistence

length analyses, which show little difference relative to

how much of the instrumental data are included

(Figs. S5–S10 in the supplemental material). We note

that over the short but strictly comparable periods

available between the instrumental and reconstruction

data (starting years 1896–1928 going forward and 1977–

45 in reverse) the recovery times are, in fact, lower for

the reconstructions compared to the instrumental data.

These results highlight that recovery time estimation is

sensitive to the length of data used in the evaluation and

argue that the additional centuries of data included in

the reconstructions realistically reveal longer recovery

times than can be estimated from the 120-plus years of

instrumental data. As noted in section 3b, the 90% prob-

ability ranges for the reconstruction-based recovery times

include those determined from the instrumental data

(Figs. 5c,d compared with Figs. 5e,f), but the overall

probability distributions for the reconstruction-based

recovery times are clearly offset to longer periods

compared to the instrumental data.

We note the difference in median recovery times

estimated here and the much shorter median recovery

time (on the order of 5 yr) estimated for snowpack re-

covery in the Sierra Nevada region by Margulis et al.

(2016). This distinction is primarily due to different

ways in which the baseline threshold for deficit is de-

fined. Here, the threshold is defined in relation to the

long-term instrumental precipitation mean for each

grid cell, as described in section 2. In Margulis et al.

(2016) the threshold is represented by a drought level

defined to be significantly below the central value of the

snow water equivalent time series. As specified by

Margulis et al. (2016), nearly 80% of years evaluated

(51 out of 65 going back to 1951) are above this

threshold and would thus contribute (on average) to

recovery. In our analysis only 50% of years would do so

(on average), leading to much longer estimated re-

covery times by construction. The distinction in esti-

mated recovery times is also likely related to the

additional information added by the longer period of

evaluation we use, mentioned above.
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As noted in section 3b, California is experiencing

anomalously high precipitation amounts so far during

the current WY. Conditional on the assumption de-

scribed there that the first two years of recovery are

characterized by generally wet years, the past half-

millennium perspective we utilize suggests the possibil-

ity for recovery times of less than a decade at the

statewide level, similar to those shown in Fig. 5d. Thus,

California appears to be experiencing the benefit of a

roughly one-in-five (or lower) likelihood situation for

recovery from the 2012–15 precipitation deficits. If 2017

turns out to be an extremely wet WY, such as 1983, that

would lead to even shorter, and thus even lower likeli-

hood, estimated recovery times. Our results indicate

that the likelihood of a statewide median full recovery

within two years is ;1% in the instrumental data and

even lower in the reconstruction EV.

Finally, the fact that very-strong-to-extreme EN

conditions in the first year of recovery from moisture

deficits such as those experienced in 2012–15 lead to a

substantial reduction in estimated recovery times is

consistent with the predicted winter precipitation

probabilities for the extreme EN that occurred during

2016 (NOAACPC 2015). However, this statewide result

disagrees spatially with the distribution of precipitation

that accompanied the winter 2015/16 EN conditions,

which included above-average moisture delivery for a

large portion of California north of;368Nand generally

below-average delivery south of this line (NOAA High

Plains Regional Climate Center 2016). We note that

only 1 out of the 12 very-strong-to-extreme EN events

evaluated (1878) exhibits a clearly similar wetter-north–

drier-south pattern, with a more muted similarity in

terms of northern wetness in 1973. Thus, conditional

on the analysis we report, the 2016 pattern represents a

low-likelihood anomaly from an a priori perspective.

Reducing uncertainty regarding the timing and event

characteristics of pre-instrumental very-strong-to-extreme

ENs would greatly help to expand the sample size for

this kind of evaluation and thereby enhance its statistical

strength, and this represents an important priority for

further research.
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